
Discrete Event Simulation of a FRAM model in SimPy

Eric van Kleef, Geulwijk 16, 3831 LM Leusden, The Netherlands

eric@vankleefconsultancy.nl

Introduction

In the latest FRAM workshop in Munich 2013, simulation of a FRAM model was

discussed. Special points of interest were the implementation of variation and the possible

use of fuzzy numbers.

Simulation is a way to show the consequences of assumptions done about reality. In a

way, a simulation is a laboratory, in which experiments can be done that can not be done in

reality (Sonnessa, 2004). A simulation does not differ from a mathematical solution of a set of

equations; the mathematical solution gives not more information about reality than the

underlying equations, but it does show the consequences of the equations more clearly. The

set of equations can be seen as the hypothesis about reality and the mathematical solution

gives the results that can be compared with measurements to falsify the hypothesis. In the

same way our FRAM model is our hypothesis about the real system we are studying. The

simulation clarifies the consequences of the relations that are described in the FRAM model,

which can then be tested against observations in the real world. If the FRAM model holds, it

gives the best available model of the reality and the results of the simulation give a believable

description of the behaviour of the system.

Of course, the simulation can never be better than the underlying FRAM model. As the

FRAM model incorporates many qualitative relations, the results of the simulation should

also be understood in a qualitative way. The simulation helps us to understand the behaviour

of the system and gives us a laboratory to experiment with that behaviour. The simulation

does not aim at quantification of the model, but merely at identifying the possible scenarios.

A clear distinction has to be made between the dynamics of the system during one

mission and the dynamics on a life cycle scale. During the life cycle of the system, many

missions are carried out. On the life cycle scale the systems adaptiveness should be studied.

Knowledge about the dynamic behaviour of the system during one mission is needed in order

to be able to assess the consequences of the long scale adaptations (Van Kleef and Stoop,

2014). It is not possible to simulate both the short term mission dynamics and the long term

adaptation dynamics in the same model. The short term dynamics require a short time step

and long term dynamics require a long simulation time. The combination of the two in one

model gives an inhibiting large number of time steps. On a long term time scale, control and

resources fluctuate, e.g. by adaptation and drift into failure phenomena (Dekker, 2011). These

phenomena should be simulated in a different model and the results of the short term

simulation can be used to assess the results of the adaptation model.

At the same time, the influence of variation requires several instantiations to be

simulated, further increasing computational load. A possible solution for this dilemma is the

use of fuzzy sets to describe variation. Several attempts have been made to introduce fuzzy

sets in simulations (Bonarini and Bontempi, 1994; Cheng and Wu, 2006; Olson and Wu,

2006; Vescovi and Travé-Massuyès, 1992; Zhang et al., 2005). Although it seems possible to

simulate with fuzzy durations, the calculations become tedious. It seems that non-linearities

are difficult to deal with.

Another way of looking at variation in simulations is the Monte Carlo method. In this

method, many runs are made with the simulation with slightly different values to get a

probability distribution as a result. In those simulation control and resources can be kept as a

constant during the simulated mission and the consequences of variation in control and

resources can be studied.

Discrete event simulation

In a FRAM model, changes in the system occurring during execution of a function are

not described, but only the result of the function is taken into account as a system state

change. The sequence in which the functions are executed is not prescribed. On the contrary,

different instantiations of the model can have a different execution sequence of the functions.

In some instantiations a function will not execute at all. Another characteristic of FRAM

modelling is the variation that occurs between instantiations. The output and duration of a

function can variate between one instantiation and another. These variations can be a result

from the different system states in which the function is called or can be inherent to the

function.

- 2 -

The simulation method chosen should reflect these characteristics of a FRAM model.

Instantiations are represented by runs in the simulations in a Monte Carlo like manner, the

same simulation run many times with variations in the execution of the functions. Due to the

complex nature of a model, this can result in instantiations that are very different. Every run

of the simulation represents an instantiation of the FRAM model. If a function may or may

not execute, some runs should represent the situation in which the function executes and

some the situation in which the function does not execute. The result of the simulations are a

set of scenarios, enableing us to generate as many scenarios as necessary. The simulation

should also restrict itself as much as possible to the description given in the FRAM model.

Fuzzy events

Output of functions are expressed by fuzzy boolean variables, with values between 0

and 1 (Zadeh, 1965). The value 0 means that the result is non existant or completely

worthless, the value 1 that the result is exactly what it should be. Values between 0 and 1

represent situations where a result is existant that deviates from the ideal situation because of

incomplete data, unclear messages or similar conditions.

The start condition and preconditions may not be clearly defined. This means that it is

not crispy clear whether the function should start or not. This is a sitation that will often be

met in practice. As an example: “If it rains, you should take your umbrella with you”. It is

clear that if rain is pouring down, one should take an umbrella. It is also clear, that if it is a

bright sunny day, the umbrella can be left at home. But what if it is a bit drizzling, or it is dry

but the sky is very dark? These are situations where the precondition is somewhere between 0

and 1. It is also possible that the start condition is clearly defined but it is not clear whether

the condition is met. Example: “If A gets an order from B, he should start”. Fuzzy situations

might be if A gets a message from B, but the message is not clear.

A fuzzy precondition is understood as a probability that the function will start. If the

precondition is true, than the function will start, if the precondition is false, the function will

not start, and if the precondition somewhere in between, the function may or may not start.

Control variables can also be expressed as fuzzy booleans. The value 0 is here to be

understood as the control being completely abesent. As a result the output will be a random

value. If the control is 1, the output will also be 1.

- 3 -

If the time variable is 1, the duration of the function will equal the nominal duration. If

the time variable is smaller than 1, the duration will follow some distribution around the

nominal duration. A useful distribution is the lognormal distribution.

Implementation of FRAM model in SimPy

The simulation presented here is a discrete events simulation of the FRAM model,

implemented in SimPy. SimPy is a process oriented discrete events simulation package

written in standard Python. SimPy was first designed by Klaus Müller and Tony Vigneau in

2002 and is at present developed by Ontje Lünsdorf and Stefan Scherfke (Vigneau et al.,

2012). Python is described in the Python language reference. The Pythonista App on iOS

was used here (OmzSoftware, 2013). Both SimPy and Python are open source software,

thatcan be operated on many platforms, including Windows, OSX and iOS.

In SimPy several building blocks exist for making discrete event simulations. The most

important ones for our purpose are processes, events and resources. Processes simulate an

entity which evolves in time, resources simulate something that is needed for the process to

execute and that has to be queued for. Events are entities that can happen sometime and that

can have a value (Matloff, 2008a, b). Functions are represented by processes, messages

between functions as fuzzy events. All events take a fuzzy value between 0 and 1. A value

zero represents a non existant event, a value one corresponds to an event that has no

variation. If an event happens with variation the value is something between 0 and 1. A fuzzy

event is implemented as a SimEvent in SimPy. Input, precondition, control, time and output

are all of the type SimEvent. This makes it possible to simply use the output of one function

as the input, precondition, control or time for another one. In the current implementation it is

not posssible to use an output as a resource for another function. Input, precondition, control

and time are all lists of events. The output is a list of two events, one that is fired if the

function is completed and one that fires if the test on the preconditions fail.

- 4 -

Figure 1 Flow chart of a FRAM function

The function starts as soon as one of the input events is happening (figure 1). The input

event is fuzzy. If, for example, someone has to react on a message of somebody else, this

message can be ambiguous. In one instantiation the function either starts or doesnot start, so

the input has to be defuzzyfied. The defuzzification is implemented as the probability of the

function starting being equal to the value of the event triggering the function.

A special point of consideration is what happens if the function is triggered twice.

There are several possibilities: the second trigger may be neglected, the function may be

executed twice or the second trigger may cancel the first. In the current implementation, the

function starts twice.

- 5 -

If the function is triggered, it waits for the resources to become available. A resource

can only be used by one function at a time. If all the resources are available, the function

continues to the next step. The function checks the preconditions; if they are met, the function

continues, if not, the function aborts and fires the second output event. If the preconditions

are not crisp, the function may interpret this as a true or a false. The probability of going on is

taken as the product of all values of the preconditions. If the function aborts, the resources are

released.

What happens in situations like this? A choice has to be made between a few

possibilities. The function can start with a delay, the function can start with variation in the

output, the function might or might not start. It is the most plausible that the function will

either start or not, but that if it starts, the function will not be hampered by the partly lacking

precondition. If the condition also influences the output, it should be doubled as an input. If

the condition also influences the duration, it should be doubled as a time parameter. If the

condition influences the variation, it should be doubled as a control.

In the next step the function fires the output after a certain amount of time. The amount

of time is determined by the time list. The first value in the list represents the nominal

duration. This is a constant value. The other items in the list are the events that determine the

variation in duration. The actual duration for the function is taken as a lognormal distribution

with the nominal duration as mean and the variation

The output value is taken as a random draw from 11/c, with c the minimum value of the

control list. If the control is 1, meaning complete control, the output is 1. If the control = 0,

meaning no control at all, the output is completely random, it may be worthless and it may be

perfect.

An example: closing a movable water barrier

As an example, the closure procedure of a movable water barrier over a railway is

taken. In the Netherlands, several railways cross dykes on places called coupures. These

coupures are essentially holes in the dyke. In order to prevent inundation through these

coupures, movable water barriers are build that can close the coupure. Closing the water

barrier involves a difficult procedure, because the water board is reponsable for closing the

water barrier, but the train dispatcher is reponsable for the train safety. Closing the water

- 6 -

barrier involves the cutting of the overhead traction wire. This can only be done when the 25

kV traction power is disconnected. If the overhead wire is still under power, closing the

barrier will result in a short circuit and failure of closing the barrier.

If the water level reaches an alarm level, the waterboard orders the preparation of the

water barrier. The dispatcher stops the trains and the operator disconnects the power. If the

water level reaches the closure level, the waterboard orders the closing of the barrier. The

operator will now close the barrier. The corresponding FRAM model is shown in figure 2.

Figure 2 FRAM model of the movable water barrier

The program input and output

The input for the simulation resembles the tabular form of a FRAM model. Alle

functions are subsequently written down with their input list, precondition list, resource list,

control list, duration list and output list. We can show this by the input list for the above

example.

- 7 -

Function(‘waterboard orders barrier preparation’)

input = [alarm_level]

preconditions = []

resources = [waterboard]

control = []

duration = [5, human]

output = [prepare_for_closure]

endfunction()

The label ‘duration’ is used instead of the label ‘time’ as used by Hollnagel, because

‘time’ is a reserved word in SimPy.

The output of the program consists of a list of events happening in an instantiation.

This list will be different every time the simulation is run, caused by the variation. One

example of the program output are listed below.

0.0 start simulation

10.0 alarm level reached

15.0 waterboard orders barrier preparation

25.0 dispatcher stops trains

35.0 operator disconnects traction power

40.0 closure level reached

50.0 waterboard pushes close button

60.0 barrier closed

100.0 end simulation

Discussion

It is shown that it is possible to construct a simple program to simulate a FRAM model.

The model uses a tabular description of the FRAM model as input and produces instances of

the model in descriptive form. The only additional values that have to be given are the

nominal durations of the functions.

As the input format of the program is restricted to the standard FRAM descriptions, it

should be relatively simple to integrate the program with the FRAM model builder and

- 8 -

visualiser (Hill, 2014). This would make it possible to use the model builder as an input tool.

the model builder checks the completeness and integrity of the model, the simulation

program will produce the simulation runs resulting from the model enabling a further check

on the completeness of the model.

Further research is needed on the output format of the simulation. As for now the

program results in a list of instantiations of the model. Possible ways to visualize these results

are histograms of the values that several events can have, or the value of the evaluation

function dependent on some background variable. The last possibility offers a way to

integrate the simulation program with long term system dynamics like models to represent

the mechanisms that are responsible for drift of the system parameters. A limitation of the

program is that is will not take output of one function as a resource for another one. Further

resource is needed to make this possible.

Many scenarios mean a lot of data. Some method is needed to make sense of this data.

Some evaluation function is needed for scenarios. This might be the effectiveness of

operation or the safety of operation or the duration of a process. The simulation is not

dependent of the evaluation function. The simulation is the same whether the resulting data

are used for evaluating the safety of the system or for evaluating the work load of some

personel.

References

Bonarini, A. and Bontempi, G. (1994) A qualitative simulation approach for fuzzy

dynamical models. ACM Transactions on Modelling and Computer Simulation, vol. 4, nr. 4,

pp. 285-313.

Cheng, T. and Wu, H. (2006) Simulation with fuzzy durations. International Journal of

Applied Science and Engineering, vol. 4, nr. 2, pp. 189-203.

Dekker, S. (2011) Drift into failure: From hunting broken components to

understanding complex systems. Ashgate, Farnham, England.

Hill, R. (2014) Instructions for use of the FRAM model visualiser. http:/

/www.functionalresonance.com. Accessed 16 May 2014.

- 9 -

Matloff, N.S. (2008a) Introduction to discrete-event simulation and the SimPy

language. University of California, http://heather.cs.ucdavis.edu/~matloff/156/PLN/

DESimIntro.pdf. Accessed 17 April 2014.

Matloff, N.S. (2008b) Advanced features of the SimPy language. University of

California, http://heather.cs.ucdavis.edu/~matloff/156/PLN/AdvancedSimPy.tex. Accessed 17

April 2014.

Olson, D.L. and Wu, D. (2006) Simulation of fuzzy multiattribute models for grey

relationships. European Journal of Operational Research, vol. 175, pp. 111-120.

OmzSoftware (2013) Pythonista [Computer program for iOS]. Version 1.3, available at

App Store.

Sonnessa, M. (2004) Modelling and simulation of complex systems. PhD Torino, Italy.

The Python Language Reference. http://docs.python.org/2/reference/. Accessed 26

February 2014.

Van Kleef, E.A. and Stoop, J.A. (2014) Reliable, resilient: Towards a dialectic

synthesis. 46 th ESReDA Conference, Turino, Italy, 29-30 May 2014.

Vescovi, M.R. and Travé-Massuyès, L. (1992) A constructive approach to qualitative

fuzzy simulation. QR’92, 6th International Workshop on Qualitative Reasoning about

Physical Systems, Edinburgh, United Kingdom, 24-27 July 1992.

Vigneau, T., Müller, K. and Helmbold, B. (2012) SimPy manual. http:/

/simpy.sourceforge.net/old/SimPy_Manual/Manuals/Manual.html. Accessed 29 April 2012.

Zadeh, L.A. (1965) Fuzzy sets. Information and Control, vol. 8, nr. 3, pp. 338-353.

Zhang, H., Tam, Z.M. and Li, H. (2005) Modeling uncertain activity duration by fuzzy

number and discrete-event simulation. European Journal of Operational Research, vol. 164,

pp. 715-729.

- 10 -

