Use of FRAM in Aviation

Institute Humans in Complex Systems Noëmi Cerny, Björn Kohli, Prof. Toni Wäfler 9th FRAM Workshop, Olten, 11-12 June 2015

Agenda

- 1) Context of the case study
- 2) Methods
- 3) Results
- 4) Conclusions
- 5) Discussion

University of Applied Sciences and Arts Northwestern Switzerland School of Applied Psychology

Setting:

- company providing aviation maintenance services
 - high safety requirements
 - highly regulated and monitored by the supervisory authority
 - highly skilled and specialized operators

FRAM (Hollnagel, 2012):

- normal operations of the last checks of a regular check of an aircraft before release
- area was selected with members of the company

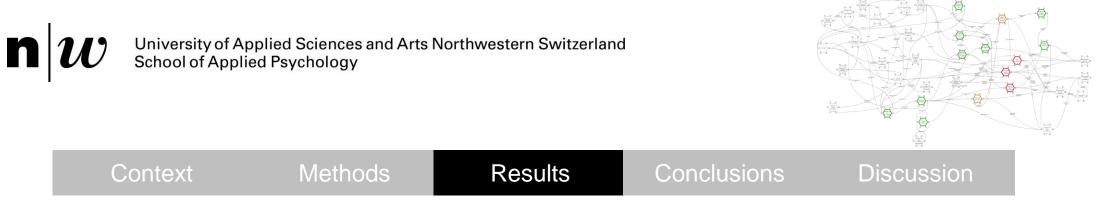
Data collection for the FRAM model:

- several iterations
- document analysis and a semi-structured interview with a shift foreman
- shop floor observations of ca. 4h each with shift foremen

Building the FRAM model:

- individually and through discussions in the research team
- variability within the same task or another task?
- aggregation level: high or low?
- focus: where to draw the line?
- programs: Excel and FRAM Model Visualizer

Validation and refinement of the FRAM model:


 observation interviews (during shop floor observations), a group interview and an expert interview

Finding the functional resonances:

- challenge to think in a complex way
- interaction of variabilities

Further steps:

- presentation to the representatives of various hierarchical levels of the company
- discussion about work as done versus work as imagined
- FRAM model shows complexity

FRAM model:

• 32 functions, 4 background functions

Major variabilities:

- late delivery or lack of material
- shortage of staff
- IT-problems
 - as background functions in the FRAM model
 - operators need to adjust to these dynamics
 - this leads in most cases to the successful completion of the checks
 - this also leads to bypasses and shortcuts

The use of FRAM helped...

- to better understand interdependencies of variabilities (overall system)
- enabled in-depth discussions regarding the necessity of adaptive working behavior
- to critically reflect side and long-term effects of traditional improvement measures
- to support decision-makers where variability should be enhanced, monitored or dampened by considering the overall system
- they thought FRAM could help to promote safety, but is a resource-intensive method

University of Applied Sciences and Arts Northwestern Switzerland School of Applied Psychology

Thank you for your attention!

Reference

Hollnagel, E. (2012). *FRAM: The Functional Resonance Analysis Method. Modelling Complex Socio-technical Systems*. Farnham Surrey UK: Ashgate.