Applying FRAM to enhance Formal Safety Assessment in the Maritime Domain

Gesa Praetorius Armando Graziano Michael Baldauf Jens-Uwe Schröder-Hinrichs

Formal Safety Assessment (FSA)

- Systematic & structured methodology
 - Considers organizational, human and technological aspects
 - Help decision makers to identify most efficient safety measures
- 5 steps:
 - Hazard Identification What can go wrong?
 - Risk Assessment How bad and how likely?
 - Risk Control Options Can matters be improved?
 - Cost Benefit Analysis What would it cost &how much better would it be?
 - Recommendations on Decision Making -What actions should be taken?
- Encourages use of expert judgement
- Mostly application of quantitative assessment methods

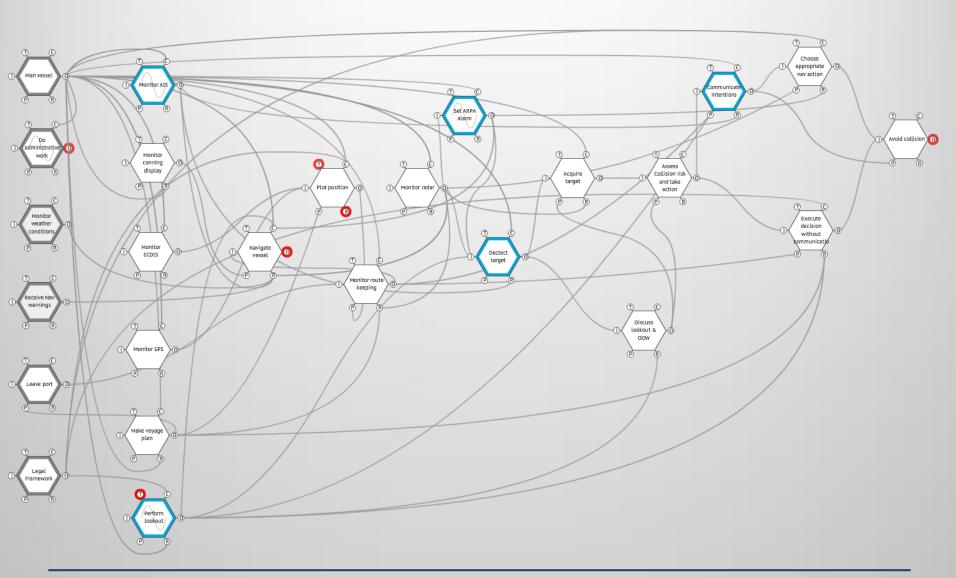
Aim of this study

 Explore if & how FRAM can offer a way of formalizing expert input to complement more traditional assessment methods

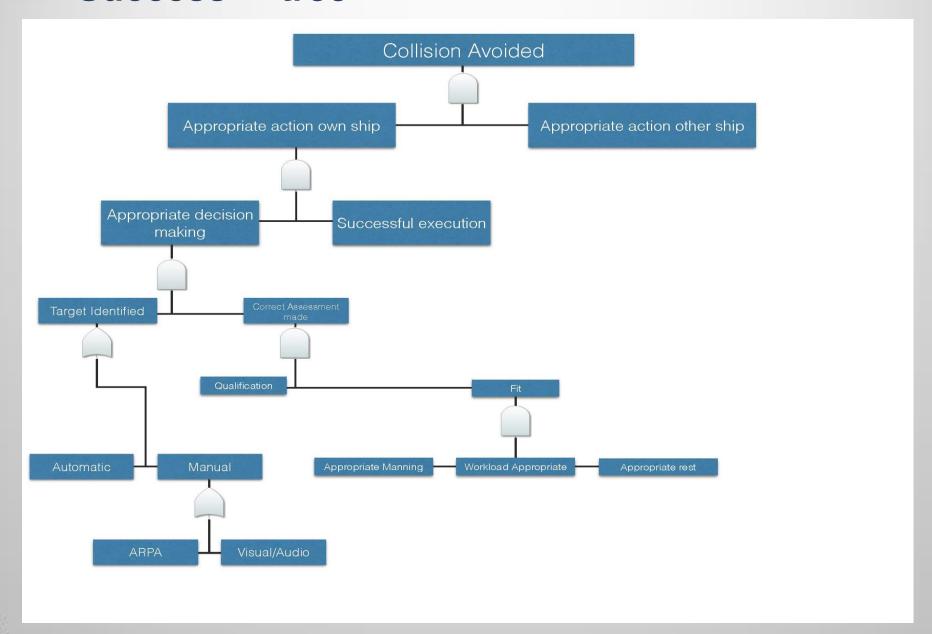
Three main questions:

- Can FRAM be used to compliment the traditional approaches to risk assessment used within the settings of the FSA?
- If so, what are the benefits of applying FRAM within hazard identification and risk control options?
- How can results of a FRAM analysis best be communicated to maritime stakeholders?

Methodology


- FRAM-model based on task analysis & expert input
- "Success"- tree
- Two focus groups with 3 participants with a maritime background
- Focus on "Hazard Identification" and "Risk Control Options"
 - Identify hazards, consequences & potential risk control options

Results I: FRAM-model and the success tree


- Identify functions based on task analysis & expert input from 3 researchers with navigator background
- Identify potential variability through data from accident analysis
 - Which functions are most likely to vary?
 - Which are the critical couplings for the system to succeed?

"Success" - tree

SCENAR	10: COL	(5104)	WITHT	THER S	SHIP
EVENT/	CONSEQ.	/ PROB.	.) CONS.	1 TOTAL	1200
FAILURE			1-5		
Monitor Dis- troffx density - traget data not complete	Mis Mulle the larget Confusion	4 (1)	3 (1)		ARRA Assistance.
Conning display less manning	no in the ment	3(2)	4(2)	7 (4)	lookost
- wrong readings	wrong manufat	4	4	8	Calibratuis
ECNS Overload Erratic Signal Woong Imputs	Error in judgement	4	3	7	- Correlate with Sensors - Back Up ECOIS- Auto - Suit kilder - With Marin

Results II

- Wide range of identified hazards and scenarios
- Generally little focus on "error"
 - Hazard "Monitor navigation equipment stand alone"
 - Consequence "OOW needs to walk a lot & does not have time to check the visual"
 - RCOs "Better integration of technical equipment"
- Function-based approach helped to identify wide range of potential RCOs
 - Design of equipment, manning, training

Results III

- Participants in general were more positive towards
 FRAM-model than towards the success tree
 - Shows the complexity of work onboard
 - Shows interdependencies among functions
 - Helps to track effects of RCOs
 - Offers a macro-level for analysis

BUT:

- Not quantifiable -> hard to have a standalone method within the FSA
- Fault-tree better for isolated problems/micro perspective
- FRAM requires a lot of time

Discussion

- Models need to be comparable to identify potential for hazard identification
 - FRAM can model positive and negative output
 - Problem to adapt fault-tree to "positive" outcome
 - Collision Avoided
- Problems to make "generic" FRAM
 - Stuck to instantiation to make a case
- FRAM requires more "creativity"
- Difficulties to create and work with the fault-tree after FRAM discussion (cannot be "unseen")

Conclusions

- FRAM enriches the assessment & triggers a different type of discussion
 - Function-based vs. error-based
 - Complexity & interdependencies
- Facilitates to identify the consequences of risk control options and presents a new perspective on the "cost" of an option
- Need to test models further and iterate both for next set of focus group

Acknowledgements

- MaRiSa research group
- CyClaDes project

Thank you for your attention!

gp@wmu.se

