

Vessel Traffic Service (VTS) as contributor to traffic management: attempts to highlight everyday performance in maritime traffic management

Gesa Praetorius

Maritime Human Factors

Chalmers University of Technology

Gothenburg, Sweden

FRAM Workshop 2013, München, 12 September 2013

Outline

- What is Vessel Traffic Service (VTS)?
- Why study VTS?
- Aim and research questions
- Theoretical frame of reference
- Methodological approach
- Results so far
- What now?

What is Vessel Traffic Service (VTS)?

- Shore-side service to the maritime community implemented by the Competent Authority
 - Promote safety
 - Improve efficiency of vessel traffic
 - Protect the environment
- 3 services
 - Information Service (INS)
 - Traffic Organisation (TOS)
 - Navigational Advice and Assistance (NAS)
- Port/Coastal, and River VTS
- Shaped by international guidelines, but implemented locally

Why study VTS?

- System undergoing large changes
 - Increase in size and number of traffic limits the manoeuvrability of all participants
- Increased demand from authorities for more "control" of traffic, including tracking of traffic movements
 - E-Navigation, Motorways of the Sea...
- Increased demand for efficient port operations
 - Chain planning among actors (vessel, pilot service, harbour master) with VTS as coordinator
- Research within VTS rather limited
 - Mostly either mathematical modelling or measurement of Situation Awareness

Research aim and questions

Aim

- Understand the preconditions for safe and efficient traffic movements within the VTS domain
- Contribute to the debate on how maritime traffic management can be designed

Research questions

- What are the current needs regarding traffic management within the VTS domain?
- What are the preconditions for safe and efficient traffic movements within the VTS domain? (today and in the future)
- How can these preconditions be used to inform the design of a traffic management system?

Theoretical frame of reference

- Cognitive Systems Engineering
 - —Joint Cognitive System
 - —Control = ability to produce stable performance output over time
- Resilience Engineering
 - Learn, monitor, respond & anticipate

Methodological Approach

- Ethnographically inspired field studies
- Interviews & focus groups (VTS operators, supervisors & mangers, bridge officers, representatives for the maritime cluster)
- Observations
 - On board & at VTS centre (IJmuiden, Rotterdam, Flushing, Malmö, Gothenburg, Horten & Kvitsoy)
- Grounded theory for qualitative data analysis
- Functional Resonance Analysis Method (FRAM) for modelling of the VTS system

RESULTS SO FAR...

The VTS as Joint Cognitive System

- VTS is a JCS
 - Operators & decision support system
 - Goal: safety & fluency
- Traffic monitoring most essential contribution for safety
 - Vessel-side and shoreside equally important
- Situation-as-it-was
- Mostly opportunistic control, little or no strategic control

The function of the VTS from a vessel perspective

VTS - A contributor to maritime traffic management?

- VTS JCS maintains control over environment, maritime traffic
- Safety emerges as property when system is in control (being able to produce a stable performance output)
- operating in a "grey zone"
- VTS appreciated by mariners, but ambiguity about VTS operations
 - "Briefing" vs. "Controlling"
- Lack of strategic control needs to be addressed
 - Re-evaluation of the goals, purposes and legal mandate of the VTS
 - Re-evaluate the relation between ship and shore

WHAT NOW?

Model "the system", but how?

- How to model a system that does not exist, yet?
 - How can changes in the locus of control be modelled to anticipate possible consequences?
 - —Turn to aviation to learn how about advantages and disadvantages about centralised control?

First steps...

- Use of Functional Resonance Analysis Method (FRAM)
 -but is it really applicable for design?

Aim

- —To identify functional units & their relation in the VTS system
- See how functions are affected in various operational conditions
- Model traffic management centralised, distributed, and partially centralised
 - "resilient traffic managment"?

How it is done.....

Provide information service

What's next?

- Identify functions related to the system's goals and overall functions
 - How are TOS and NAS realised?
 - What characterises everyday performance

Iterate the model

Questions

- Can FRAM help to design a resilient traffic management system?
 - Can FRAM be used to determine system's "ability to/ degree of" resilience?
 - How can FRAM inform the modelling of control in system design?
 - —Centralised, distributed or polycentric?
 - How do I know that the outcome will aggregate in a good/bad way?
 - —We do accident analyses, but that already implies functional resonance.....
 - Robustness versus resilience?
 - Managing, monitoring or eliminating performance variabilty?

Acknowledgements

- Fru Mary von Sydow, född Wijk, Foundation
- Region of Västra Götaland
- Erik Hollnagel, Joakim Dahlman & Deborah Rushton, Victor Sjölin
- VTS personnel and mariners part of this study!

Thank you for your attention!